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ABSTRACT  
This paper aims to present and compare the damage identification results of two methods proposed by 
the authors for beam-like structures. Both methods use the same numerical and regression models as 
well as the experimentally obtained values of the beam bending frequencies. The difference between 
these methods lies in the final stage of their usage. The first method relies on finding three closest 
intersection points of frequency curves and the second method is based on finding a minimum value of 
the proposed frequency related functional. The results of damage identification for 28 damage 
scenarios using the proposed methods are presented and compared in this paper. The comparison 
showed that the accuracy of both methods is almost the same and depends mostly on the input data 
quality.  
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1. INTRODUCTION 
Any change in structure physical parameters causes a change in its modal parameters (natural 
frequencies, mode shapes and modal damping). Damage in a structure causes change in its 
mass, damping and stiffness so this makes a well founded base for vibration based non-
destructive structural health monitoring methods. Over the past few decades, great attention 
has been put to develop more efficient and accurate damage identification methods. Many of 
them are mentioned in literature, for instance in [1]. 
The aim of the present paper is to evaluate the performance of two similar damage 
identification methods that use numerical, regression and experimental data of beam bending 
frequencies.  
 
 
2. DAMAGE IDENTIFICATION TECHNIQUES 
Both of the considered damage identification methods are based on the same numerical and 
regression analysis of the real beam structure. Also, the performed experiments were the same 
so the same values of shifts in bending frequencies are used. 
The difference between the proposed methods refers to the determination of damage 
parameters i.e. damage location and depth. In that sense, the proposed methods are named by 
characteristic way followed to find damage parameters, and they are: Method No.1. 
Intersections of frequency curves and Method No.2. Minimization of the proposed functional.  
A brief glance on the common characteristics of both methods are presented in the part 2.1, 
and the specific properties of methods are presented in the part 2.2. 
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2.1. Common analyses for both of the proposed damage identification methods  
For both of identification techniques, it's necessary to perform numerical and regression 
analysis as well as experimental measurements of bending frequencies of the real beam. 
 
2.1.1. Numerical analysis 
After establishing the numerical model of the real beam structure, the values of frequencies of 
undamaged and damaged state should be calculated. For the free-free beam with the length of 
LB=400 mm, height H=8,16 mm, width B=8.12 mm, modulus of elasticity E=2.068x1011 Pa, 
mass density ρ=7820 kg/m3, and Poisson’s coefficient ν=0.29, using the solid elements in the 
software I-DEAS Master Modeler 9 and Normal Mode Dynamics option, the values of fi

NU, 
i=1,2,3,4, corresponding to the first four natural bending frequencies of the undamaged beam 
were obtained. The damage perpendicular to the beam axis and at location LD was simulated 
as an open notch of width of 1 mm and depth d. Varying the relative location L = LD/LB and 
the relative depth of the damage D = d/H, the first four bending frequencies fi

ND of the 
damaged beam were calculated. The location LD was measured from the left end of the beam 
and due to structural symmetry was varied from 10-200 mm in 10 mm increments. The depth 
d was varied from 1-4 mm in 1 mm increments.  
 
2.1.2. Regression analysis  
The numerical values of frequencies fi

NU and fi
ND are used as input data for the software 

STATISTICA 6.0 to find appropriate regression relations between the frequencies and 
parameters D and L. The best fit was chosen on the basis of the value of coefficient of 
correlation in the Nonlinear Estimation option (coefficients here ranged from 0.996 to 0.998).  
The regression relations for the beam under consideration are found in the general form: 
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where fi

NU, i=1,2,3,4, are numerical frequencies of the undamaged beam and k=4,5,6,7 for 
i=1,2,3,4 respectivelly. The ai and bij are the regression coefficients. 
Unfortunatelly, these regression relations inherently suffers of the trend to smooth the data at 
extreme points. More on this topic is presented in [2]. 
 
2.1.3. Experimental measurements  
The experimental measurements of natural frequencies were performed using the PC, 
frequency analyzer HP 3567A, interface HP82335A, accelerometers B&K 4394 and impact 
hammer B&K 8202 with load cell B&K 8200, Figure 1. Bending frequencies fi

EU and fi
ED, 

i=1,2,3,4, were measured on seven beam samples shown on Figure 2, which were hung by 
silicon ropes to simulate a free-free state.  
 

               
 
  Figure 1. Impact hammer and accelerometers                     Figure 2. Seven beam samples 
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The damage was simulated by cutting the beam sample by a thin saw.  The initial depth was 1 
mm, and then varied from 1- 4 mm in 1 mm increments.  
The values of frequencies obtained numerically and experimentally differ less or more due to 
modeling and measurement errors that are inevitable in reality. Also, it was impossible to cut 
accurately the nominal depth of the notches using the ordinary saw cut.  
 
2.2. Specific characteristics of the proposed identification methods  
 
2.2.1. Method No.1 (Intersections of frequency curves) 
The regression relations given by Eq.(1), can be written in the relative form: 
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These relative frequency changes Fi, 
i=1,2,3,4, represent the 3D surfaces in the 
(D, L, Fi) space. If these surfaces are cut by 
planes that correspond to the specific value 
of frequency change Fi, the intersection 
curves can be obtained and plotted in D-L 
plane, Figure 3. A particular intersection 
curve contains all points (D, L) that 
correspond to the same specific frequency 
change Fi.  
For four values of Fi, there are four 
intersection curves that should theoretically 
intersect in one point (Dest, Lest), which 
represents the estimation of damage 
parameters. However, in practice, it would 
be very hard to obtain the same intersection point for all four frequency curves as the 
numerical values of intersection point coordinates can differ more or less, Figure 4.  
 

 
 

Figure 4. Characteristic cases of intersections: a) ideal case; b) special case; c) general case 
(note: the intersection point of F1 and F2 is marked as 12, etc.) 

 
As can be seen from Figure 3, changes in only two first frequencies should be sufficient to 
find the characteristic intersection point. However, due to inevitable modeling and 
measurement errors, one should not rely solely on only two measured frequencies to find the 
estimation (Dest, Lest). It is much safer and reliable to locate this point using more frequency 
changes, which also contribute to the robustness of the technique.  
Using an appropriate mathematical method to solve the system of regression relations, one 
can found a finite set of intersection points. The technique proposed in [2] suggests finding 
the three closest intersection points in the established set of intersection points. These three 
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points should give a minimal sum of their distances from their mean value. The mean value of 
these three points can be adopted to represent the estimation of damage parameters. The 
obtained estimation (Dest, Lest) of damage parameters should not be much beyond the 
numerically established ranges for L and D. In such a case, a next combination of three closest 
intersection points should be the appropriate estimation.  
A finite set of intersection points (D,L) is obtained in the following way. The pair of 
regression relations in form of Eq.(2) can be written as: 
 

Fi=1- ai D2 gi(L)     and     Fj=1- aj D2 gj(L) .                              …(3)  
 
Combining the equations (3) for all pairs i,j =1,2,3,4, ji ≠ , it follows: 
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For the measured frequency changes Fi and Fj, one can find all values of the relative location 
L that satisfy the second equality in Eq.(4). After that, the corresponding values of the relative 
depths D can be found also from Eq.(4). Of course, the proposed method that uses Eq.(4) is 
valid only for regression relations in the form of Eq.(2). For other types of best-fit regression 
relations, a feasible way to solve a set of generally nonlinear equations should be found.  
 
2.2.2. Method No.2 (Minimization of the proposed functional) 
To identify damage location and depth, the functional FUN(D,L) is proposed in the form:  
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where are:  
fi

NU- ith natural frequency of the undamaged beam numerically obtained,  
fi

EU- ith natural frequency of the undamaged beam experimentally obtained,  
fi

ED- ith natural frequency of the damaged beam experimentally obtained,  
fiR(D,L) - ith natural frequency of the damaged beam calculated by regression relation Eq.(1).  
The proposed functional is similar to the functional given in [3] and is based on presumption 
that the ratio fi

NU/fiR(D,L) is close to the fi
EU/fi

ED.  
The estimation of damage parameters is made by minimization of the functional FUN(D,L) 
inside the reasonable bounds 0-0.5 for both D and L, using the software Mathematica 5.1. 
 
 
3. DAMAGE IDENTIFICATION RESULTS  
The abovementioned procedures were repeated for 28 cases of damaged states (7 locations by 
4 depths). Figure 5 shows the results of damage identification obtained by the presented 
methods. It can be concluded that the accuracy of both of the presented methods are higher for 
higher L and D parameters. The main reason for low accuracy for damages near the beam end 
(low L) and with a small depth (low D) can be found in smoothing trend of regression 
relations and low measurement accuracy (low frequency resolution) for small damage depths. 
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Figure 5. Results of damage identification:  - point indicating Lreal & Dreal ,   

 - estimation Lest & Dest by method No.1,  – estimation Lest & Dest  by method No.2 
 
 
4. CONCLUSION 
The paper shows how damage parameters can be estimated using bending frequencies of a 
beam obtained in numerical, regression and experimental way. 
The results of the both identification technique are quite satisfactory and very similar. This 
means that their accuracy mostly depends on the quality of numerical model and regression 
relationships, as well as the accuracy of frequency measurements. The numerical model of the 
beam was not updated to match all seven real beams so there were slight discrepancies in the 
dimensions and frequency values in undeformed beam states.  
In reality, however, the efforts should be made to establish the numerical model that is the 
best representation of the real beam, so the better identification results would be obtained. 
Also, the identification results could be improved by more numerical damage scenarios to 
provide a sufficient number of points needed for establishment of regression relations. Also, 
more attention should be put on reducing the measurement errors since a certain level of noise 
always exists. 
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